
Hotline Protocol
v1.1.1

By Virtual1, PDF'd by Wade Tregaskis (aka Sys)
virtualftp.neotek.net

http://2100sw.8m.com/
18/2/2000

Notes
You can download the latest version of this document from the

2100 Software web site (http://2100sw.8m.com/), as well as the
Pacific Media & Design Hotline server, hotline://pmd.dhs.org/

This guide was generated during several days of intense use of
OTSessionWatcher, to get the protocol figured out in preparation for the
development of HotSocket, a RealBasic socket-based class for use as a
Hotline Client/Server interface.

Thanks goes out to XAW and his development of the BHC, (Basic
Hotline Client) whose RealBasic source code gave me (Virtual1) the
insight necessary to begin to understand what I was seeing in the
Session Watcher. Thanks also to the creators of mBot, without whose
greed and lack of interest in releasing source code led me to make
HotSocket, and thus, the need to make this guide. ;)

Chapter 1: Numbers & Strings
Anywhere there is a number that is preceeded by a length, (such as

if the number is the only part of an object, like Socket or Icon) then the
number can be a short OR a long. Hotline client and server software will
always pick the smaller of the two when sending, though it does not
hurt them to receive a long that is zero.

Numbers appear to be stored as "two's complement".

0 = 00 00 00 00 (you can send as a short 00 00)
1 = 00 00 00 01 (you can send as a short 00 01)
65535 = 00 00 FF FF (you can send as a short FF FF)
65536 = 00 01 00 00
2 = 7F FF FF FF
-2147483648 = 80 00 00 00 (now counting backwards toward

zero)
-1 = FF FF FF FF

This is how 2's complement works. The only place you'd have to
worry about this is if you ran into a file > 2.1gb that was returning a
negative filesize or something. Remember that icons can be negative
numbers.

It might be simpler to just send everything you can as a long.
Some items must be sent as shorts if they don't have a length indicated
in the protocol, such as all length indicators and some items in
filelist/userlist entries. Anywhere you see short() or long(), it means
that you MUST send it that way, because there is no length indicator.
Anywhere you see number(), you need to send the length as a short,
followed by the number, in your chosen format.

There are a few oddball exceptions. Icon numbers are numbers,
and normally the server will send them in Number format. (length
followed by the number) Userlists however, send the Socket, Icon, and
Status objects without length bytes, (all as shorts) Filelists have the
same limitation. In the event of a negative icon number, (it can happen,
and does work) the icon will be sent as a SHORT two's complement
number. They are very easy to convert fortunately... just lop off the the
first two characters of the number. -3 changes from FF FF FF FD to FF
FD. This limits your numeric range to -32768 <-> +32767.

Strings are always sent as a length (always a short) followed by
the string's characters. Strings marked as "encoded" have each
character of the string EOR'd with $FF. i.e. y=chr(255-asc(x)) It's not
meant to be hard to crack, just hard to READ and easy to DO. Normal
string format is commonly referred to as a "pascal string", if you happen
to know it by that name.

Chapter 2: Objects

Objects are sent under the following format:

• object header
 • short (object ID number)
 • short (object length)

Note: This does not count these four header bytes
• object data
 if it's a number >=0 and <65536:
 • short (number)
 if it's a number >65535:
 • long (number)
 if it's a number <0:
 • long (2^32+number)
 if it is a string:
 • string encoded strings have all chars EOF $FF)
 if it is a filelistentry
 • file type four characters, or "fldr" if folder, or
 "alis" if unresolved alias
 • file creator four characters, or long(0) if folder
 • long (contained files if folder, file size in bytes if doc/app)
 • long (0) unused, always zero
 • long (filename length)
 • string (filename)
 if it is a Path
 • short (directory levels)
 • one or more directory levels
 • 00 just one chr(0), not sure what it's for
 • short (length of dir name)
 • string (dir name)
 if it is a userlistentry
 • short (socket)
 • short (icon)
 • short (status)
 • short (length of nick)
 • string (nick)
 if it is a datetime
 • eight bytes of date/time code

Integer objects are preceeded by a length for a reason. Do not
assume that just because the object you are expecting can only be a
number 0-50 ,that it will have to be sent as a short. It could be sent as
a long, and we don't want to break the socket for such a simple
misunderstanding. The reverse is true for longs, they may be sending an
icon number that is 5, and decide to save a few bytes and send it as a
short. Be careful.

Client objects and their ID numbers:

ID# Name Object Type
100 errormsg string
101 message string
102 nick string
103 socket number
104 icon number
105 login encoded string (NOT encoded in transaction #352)
106 password encoded string
107 xferID number - the ID number of the file transfer
108 xfersize number - size of file xfer, in bytes
109 parameter number - specifies icon for broadcast
110 privs eight bytes - can make 64 flags, only use 27
111 ???
112 status number (0 = black & active)
113 ban short (0 = kick, 1 = ban)
114 chatwindow Four random bytes?
115 subject string - the new subject of a chat window
200 fileentry file list entry
201 filename string
202 path path
203 "flt" ???
204 ???
205 infolongtype string
206 infocreator string
207 infosize number
208 infocreated datetime
209 infomodified datetime
210 comment string
211 newfilename string
212 targetpath path
213 infotype string - the 4-character MacOS file type
300 userlistentry user list entry

Chapter 3: Transactions
Transaction are sent under the following format:

• header
 • short (transaction class) 0 = info/request, 1 = reply
 • short (transaction ID number) server replies are always zero
 • long (task number)
 • long (error code) valid if this is a reply, 0 = ok, 1 = err
 • long (length of data block)
 • long (length of data block, again)
• data
 • short (number of objects in transaction)
 • objects can be one, many, or none

It would be wise to assume that objects can be passed in any and
possibly random order. Ensure that your code allows for this, otherwise
your client or server may not handle new or alien clients/servers.

Transaction IDs, classes, types, names, and objects:

ID# Cls In it Type Name Object(s)
101 0 Client request GetNews None
 0 1 Server reply GetNews message
102 0 Server info NewPost message
103 0 Client request PostNews message
104 0 Server info Broadcast message
104 0 Server info Error parameter, message
104 0 Server info PrivateMessage socket, nick, message
105 0 Client info SendChat message, chatwindow,

parameter
106 0 Server info RelayChat message, chatwindow
107 0 Client request Login login, password, nick, icon
108 0 Client request SendPM socket, message
109 0 Server info Agreement message
110 0 Client request Kick socket, ban
111 0 Server info Disconnected message
112 0 Client request CreatePchatWith socket
 0 1 Server reply CreatePchatWith chatwindow, socket, icon,

status, nick

ID# Cls In it Type Name Object(s)
113 0 Server info InvitedToPchat chatwindow, socket, nick
113 0 Client info AddToPchat socket,chatwindow
114 0 Client Info RejectPchat chatwindow
115 0 Client request ¬

RequestJoinPchat ¬
chatwindow

 0 1 Server reply JoiningPchat userlistentry, ¬
userlistentry, subject

116 0 Client Info LeavingPchat chatwindow
117 0 Server Info JoinedPchat chatwindow, socket, icon,

status, nick
118 0 Server Info LeftPchat chatwindow, socket
119 0 Server Info ChangeSubject chatwindow, subject
120 0 Client Info ChangeSubject chatwindow, subject
200 0 Client request ¬

FolderList (path)
 0 1 Server reply FolderList file entry
202 0 Client request Download file name, path
 0 1 Server reply Download xfersize, xferID
203 0 Client request Upload filename, path, xfersize
 0 1 Server reply Upload XferID
204 0 Client request MoveToTrash ¬

filename, path
205 0 Client request CreateFolder ¬

filename, path
206 0 Client request GetFileInfo ¬

filename, path
 0 1 Server reply GetFileInfo

info type, info long type,
info creator, file name,
info created, info
modified, info size,
comment

207 0 Client request SetFileInfo
filename, path,
new file name / comment

208 0 Client request MoveFile file name, path, target
path

209 0 Client request MakeAlias file name, path, target
path

300 0 Client request GetUserList (none)

ID# Cls In it Type Name Object(s)
 0 0 Server reply GetUserList user list entry
301 0 Server info UserChange socket, icon, nick,

status
302 0 Server info UserLeave socket
303 0 Client request GetUserInfo socket
 0 1 Server reply GetUserInfo message, nick
304 0 Client info ChangeNickIconStatus

icon, nick, status
350 0 Client request CreateUser login, password,

nick, privs
351 0 Client request DeleteUser login
352 0 Client request OpenUser login (NOT ENCODED)
 0 1 Server reply OpenUser login, password,

privs, nick
353 0 Client request ModifyUser nick, login,

password, privs

Transactions dealing with files always include the filename. If
the path is not included, root folder can be assumed. If the file is being
moved or aliased, targetpath may also be included. If not, root is
assumed as the target.

Notes:

• Transaction #105 (SendChat) is chat. When sent with a
parameter of 1, it becomes an emote.

• Server reply to #352 always returns string(ctrl-G) as password.
• #353 must send a password string (chr(0)) if password was not

changed. Returning string (ctrl-G) will result in that being the user's
new password!

• Unless otherwise specified, a successful task reply will have an
error code of 0 and no objects. Unsuccessful tasks will reply with an
error code of 1 and the error message object.

• Server transaction #104 "Error" is used for when client sends a
non-request that fails, such as trying to send public chat when they
don't have chat privs.

• Reply to #303 (get info) will be missing the Nick object if you're
getting info on a "ghost". (the HL client returns "Unnamed User")

• Task is a reply to a request. The object(s) included in the Task
are dependent on what the request was. The Task can be matched back

to its request by using the task number portion of the header. It's
probably possible to reuse task numbers, but don't re-issue a task
number in a request until the current instance of that task number has
been replied to! I have noticed that while the client can create tasks,
the server cannot. This makes sense, because a server would eventually
crash or eat up all available memory if it had to remember tasks until
complete, assuming it was up a week or so and had clients leaving tasks
hanging.

Chapter 4: Logging In
Before sending a login, you must establish a "pipe". Do this by

connecting over TCP to the server (the default port is 5500), and then
exchanging this "handshake" with the server:

CLIENT HELLO
 • "TRTPHOTL" identifies this is a hotline client
 • short (1) Minimum server version this client is compatible with?
 • short (2) Client version?

TRTPHOTL (0) (1) (0) (2)

SERVER HELLO
 • "TRTP"
 • long (errorcode) - 0 = OK you are connected, 1 = rejected

TRTP (0) (0) (0) (0)

Once these have been exchanged, you can assume you are connected
to a HL server and can proceed to login. Until you have received a
success reply to your login transaction, the only other transaction you
can submit is a request for disconnect.

Once logged in, you are by no means required to request a userlist,
request news, or do anything else for that matter. The normal client
will send the login and then immediately fire off a request for the
agreement, userlist and news, before even receiving confirmation of a
successful login.

Chapter 5: Further Notes
I have seen many admins and co-admins running around kicking idle

users, saying they are "taking up bandwidth". I was wondering if this
was true, and did some pondering. A user that is completely idle (no file
xfers) by themselves will take zero bandwidth. There will be some
bandwidth needed though for each time a user in the user list goes idle,
goes active, changes nick or icon, leaves, arrives, or someone posts
public chat. Each of these events requires a task to be sent to every
user online, though the amount of data sent is quite small. News posts
also go to all users, and those can be relatively large in comparison to
the other transactions. It sounds kind of silly, but it is in everyone's
best interest that on busy file serving server, you should be quiet and
use chat only sparingly.

